㈠ 有关挖机 维修方面
中国宏昌工程机械资料网_各种挖掘机维修方面的_慧聪网商铺主要销售各种挖掘机维修方面的图书和资料。现本公司已出版的图书包括:《最新国内外全液压挖掘机电路图、液..._慧聪网商铺让您成为改变商业规则的聪明老板!
siyun2008.b2b.hc360.com/ - 类似网页
中国工程机械资料网— 挖掘机图纸下载— 挖掘机维修资料中国工程机械资料网是国内最专业的工程机械资料供应商,提供各种品牌工程机械资料在线浏览和下载,挖掘机维修资料、装修手册、零 ... 我们的很多资料都是来源与广大热心的业内人士的提供,我们的宗旨就是为大家提供一个资料交换的平台,如果您有这方面的 ...
www.zh-zl.com/ - 类似网页
机械运行与维修:机械仪表工业:工业技术:图书:当当网本书共分13章,详细介绍了小松、日立、加藤、神钢、住友、卡特、大宇、现代等十几种进口挖掘机的维修知识,包括技术参数、维修 .... 作者根据搜集到的资料和从事这方面工作的经验编写了本书。本书内容着重实用,以介绍袋式除尘器的构造和部件、技术数据. ...
list.dangdang.com/01.63.03.06.htm - 类似网页
住友故障诊断与排除》本书主要是以住友系列液压挖掘机为例,讲解在使用中产生的带有普遍性、 典型性的故障早期现象、特征、原因、诊断及排除方法,以帮助车主和挖掘机维修人员解决一些在实际使用和维修中经常发生或偶尔遇到的具体问题,并从挖掘机使用 ...
㈡ 求EVA树脂国产料常见牌号
日本东曹公司
(TOSOH CORP.)
EVA625(Nipoflex 625) VA:15%,MI:14 用于注塑成型及热熔胶。
EVA630(Nipoflex 630) VA:15%,MI:1.5 挤塑和吹塑级。用于充气薄膜、板、片、异型材、 中空成型制品、鞋底、电线包皮等。
EVA631(Nipoflex 631) VA:20%,MI:1.5 挤塑和吹塑级。用于充气薄膜、板片和异型材挤塑 、中空成型制品、电线包皮等。
EVA633(Nipoflex 633) VA:20%,MI:20 用于注塑成型和挤塑涂层及热熔胶。
EVA634(Nipoflex 634) VA:26%,MI:4 用于充气薄膜、板片和异型材挤塑 、中空成型和泡沫制品、热熔粘合及塑料改性等。
EVA680(Nipoflex 680) VA:20%,MI:160 用于热熔胶。
EVA681(Nipoflex 681) VA:20%,MI:350 用于热熔胶。
EVA710(Nipoflex 710) VA:28%,MI:18 用于注塑成型及热熔胶。
EVA720(Nipoflex 720) VA:28%,MI:150 用于热熔胶。
EVA722(Nipoflex 722) VA:28%,MI:400 用于热熔胶。
EVA750(Nipoflex 750) VA:32%,MI:30 用于特殊高粘合制品、热熔胶及塑料改性等。
EVA760(Nipoflex 760) VA:42%,MI:70 用于覆膜胶、涂料及油墨等。
日本住友公司
(Sumitomo Chemical Co.,Ltd.)
Sumitate HC-10 VA:20%,MI:150 用于热熔粘合。混合用等制品。
Sumitate HE-10 VA:20%,MI:300 用于热熔粘合。混合用等制品。
Sumitate KA-10 VA:28%,MI:20 用于热熔粘合。混合用等制品。
Sumitate KA-20 VA:25%,MI:3 用于热熔粘合。混合用等制品。
Sumitate KA-31 VA:28%,MI:7 用于热熔粘合。混合用等制品。
Sumitate KC-10 VA:28%,MI:150 用于热熔粘合。混合用等制品。
Sumitate KE-10 VA:28%,MI:300 用于热熔粘合。混合用等制品。
Sumitate KE-11 VA:28%,MI:450 用于热熔粘合。混合用等制品。
Sumitate MB-10 VA:32%,MI:60 用于特殊高粘合强力的粘合剂等制品,如覆膜胶等。
Sumitate RB-11 VA:41%,MI:60 用于特殊高粘合、强力的粘合剂等制品,如覆膜胶、油墨等。
日本三井公司
(Mitsui Polychemical Co.,Ltd.)
Evaflex 40W、40Y VA:40%,MI:65 用于掺混树脂、粘合剂原料等制品,如覆膜胶、 油墨等。
Evaflex 150 VA:33%,MI:30 用于掺混树脂、粘合剂原料等制品,如覆膜胶等。
Evaflex 210 VA:28%,MI:400 用于掺混树脂、粘合剂原料等制品,如热熔胶等。
Evaflex 220 VA:28%,MI:150 用于掺混树脂、粘合剂原料等制品,如热熔胶等。
Evaflex 260 VA:28%,MI:6 用于掺混树脂、粘合剂原料等制品,如热熔胶等。
Evaflex 310 VA:25,MI:400 用于掺混树脂、粘合剂原料等制品,如热熔胶等。
Evaflex 360 VA:25%,MI:2 用于掺混树脂、粘合剂原料等制品,如热熔胶等。
Evaflex 410 VA:19%,MI:400 用于掺混树脂、粘合剂原料等制品,如热熔胶等。
Evaflex 420 VA:19%,MI:150 用于掺混树脂、粘合剂原料等制品,如热熔胶等。
Evaflex 450 VA:19%,MI:15 用于掺混树脂、粘合剂原料等制品,如热熔胶等。
Evaflex 460 VA:19%,MI:2.5 用于掺混树脂、粘合剂原料等制品,如热熔胶等。
Evaflex 550 VA:14%,MI:15 用于掺混树脂、注塑制品等。
Evaflex 560 VA:14%,MI:3.5 用于特殊聚合物的混合。
法国阿托芬纳公司
(Atofina Chemical Co.,Ltd.)
Evatane 18-150 VA:18%,MI:150 用于特殊聚合物的混合。
Evatane 18-500 VA:18%,MI:500 用于热熔粘合。混合用等制品。
Evatane 28-03 VA:28%,MI:3 用于热熔粘合。混合用等制品。
Evatane 28-05 VA:28%,MI:5 用于热熔粘合。混合用等制品。
Evatane 28-25 VA:28%,MI:25 用于热熔粘合。混合用等制品。
Evatane 28-150 VA:28%,MI:150 用于热熔粘合。混合用等制品。
Evatane 28-420 VA:28%,MI:420 用于热熔粘合。混合用等制品。
Evatane 28-800 VA:28%,MI:800 用于热熔粘合。混合用等制品。
Evatane 33-25 VA:33%,MI:25 用于特殊高粘合、强力的粘合剂等制品,如覆膜胶等。
Evatane 33-45 VA:33%,MI:45 用于特殊高粘合、强力的粘合剂等制品,如覆膜胶等。
33-400 VA:33%,MI:400 用于热熔粘合。混合用等制品。
Evatane 42-60 VA:42%,MI:60 用于特殊高粘合、强力的粘合剂等制品,如覆膜胶、油墨等。
加拿大AT公司
( At Plastics Inc.)
Ateva 1850A VA:18%,MI:150 用于热熔粘合。混合用等制品。
Ateva 1880A VA:18%,MI:500 用于热熔粘合。混合用等制品。
Ateva 2803A VA:28%,MI:3 用于热熔粘合。混合用等制品。
Ateva 2820A VA:28%,MI:25 用于热熔粘合。混合用等制品。
Ateva 2830A VA:28%,MI:150 用于热熔粘合。混合用等制品。
Ateva 2842A VA:28%,MI:400 用于热熔粘合。混合用等制品。
Ateva 3325AC VA:33%,MI:43 用于特殊高粘合、强力的粘合剂等制品,如覆膜胶等。
Ateva 4030AC VA:40%,MI:55 用于特殊高粘合、强力的粘合剂等制品,如覆膜胶、油墨等。
比利时艾克森化学公司
(Belgium Exxon Chemicals Co.)
UL 15028 VA:28%,MI:150 用于热熔粘合。混合用等制品。
UL 40028 VA:28%,MI:400 用于热熔粘合。混合用等制品。
UL 4533 VA:33%,MI:45 用于特殊高粘合、强力的粘合剂等制品,如覆膜胶等。
UL 5540 VA:40%,MI:55 用于特殊高粘合、强力的粘合剂等制品,如覆膜、涂料、油墨等。
韩国现代石油化学公司
( Hyundai Petrochemical Co.,Ltd.)
EF320 VA:6%,MI:0.8 用于薄膜。
ES430 VA:18%,MI:2.2 泡沫级,用于鞋底、凉鞋、拖鞋、玩具、浮物等。
ES440 VA:15%,MI:2.2 泡沫级,加工性、刚性、抗低温性好。用于凉鞋、滑块、鞋底、衬底料和隔热制品。
VA600 VA:28%,MI:6 用于热熔粘合。混合用等制品。
VA800 VA:28%,MI:20 用于热熔粘合。混合用等制品。
VA900 VA:28%,MI:150 用于热熔粘合。混合用等制品。
VA910 VA:28%,MI:400 用于热熔粘合。混合用等制品。
VA920 VA:19%,MI:150 用于热熔粘合。混合用等制品。
VA930 VA:19%,MI:400 用于热熔粘合。混合用等制品。
新加坡聚烯烃私营有限公司
(The Polyolefin Company Pte.,Ltd.)
H2020 VA:15%,MI:1.5 发泡级,加工性、刚性、抗低温性好。用于凉鞋、滑块、鞋底、衬底料和隔热制品。
H2181 VA:15%,MI:2 发泡级,加工性、刚性、抗低温性好。用于凉鞋、滑块、鞋底、衬底料和隔热制品。
K3212 VA:21%,MI:3 用于热熔粘合。混合用等制品。
台湾塑胶股份有限公司
(TAISOX)
7470M VA:26%,MI:4 弹性优异、透明柔软、高可挠性。用于交联发泡、吸震材料、混渗色母、挤出建材等。
7360M VA:21%,MI:2 弹性优异、高可挠性。用于发泡鞋材、交联发泡板、吸震材料等。
7350M VA:18%,MI:2.5 抗化学性佳、弹性佳、高可挠性。用于发泡鞋材、交联发泡板、吸震材料。
7240M VA:15%,MI:1.5 机械性质佳、高弹性。用于发泡鞋材、交联发泡板。
7440M VA:14%,MI:4 高弹性、高可挠性、高流动性。用于可挠性物件、交联发泡板。
7340M VA:14%,MI:2.5 高弹性、高可挠性。用于可挠性物件、交联发泡板。
台湾聚合化学品有限公司
(USI CORPORATION)
UE629 VA:18%,MI:2.5 用于鞋材发泡。
UE630 VA:16%,MI:1.5 用于压缩成型(发泡)、平板挤压、异型挤压、吹压成型。
UE631 VA:22%,MI:1.4 用于鞋材发泡、异型压出、挤压吹袋。
UE508 VA:8%,MI:85 用于粉末压烫贴合(使用于不织布热熔胶)。
UE510 VA:10%,MI:85 用于粉末压烫贴合(使用于不织布热熔胶)。
UE612-04 VA:19%,MI:150 用于热熔胶。
UE633 VA:20%,MI:19 用于射出成型、热熔胶。
UE638-04 VA:28%,MI:18 用于热熔胶。
UE639-04 VA:28%,MI:150 用于热熔胶。
UE649-04 VA:19%,MI:400 用于热熔胶。
㈢ 求东芝,三菱,京瓷,住友,肯纳,克洛伊,伊斯卡,OSG丝锥,铣刀电子样本。
泰珂洛(东芝)《切削刀具2009-2010》;
三菱综合材料《综合样本2009-2010》;
京瓷《综合样本》;
住友电工《综合样本》;
肯纳《车削刀具》《公制铣削刀具》《孔加工刀具》;
克劳依《切削刀具2010-2011》;
伊斯卡《综合样本2011-2012》;
OSG《孔加工及螺纹加工工具2008-2009》《铣削工具》;
以上全都有,但是很多超过100M,发送很困难!包括你没提到的像山特维克、山高、瓦尔特、威迪亚、蓝帜、森拉天时、特固克、黛杰、日立等等!
㈣ 注塑住友电动机模厚解码器s5异常怎解除
应用程序发生异常 未知的软件异常
1.病毒木马造成的,在当今互联网时代,病毒坐着为了获得更多的牟利,常用病毒绑架应用程序和系统文件,然后某些安全杀毒软件把被病毒木马感染的应用程序和系统文件当病毒杀了导致的。
2.应用程序组件丢失,应用程序完整的运行需要一些系统文件或者某些ll文件支持的,如果应用程序组件不完整也会导致的。
3.系统文件损坏或丢失,盗版系统或Ghost版本系统,很容易出现该问题。
4.操作系统自身的问题,操作系统本身也会有bug 。
5.硬件问题,例如内存条坏了或者存在质量问题,或者内存条的金手指的灰尘特别多。
㈤ 住友se220hd警报伺服异常i3怎么处理
应用程序发生异常怎么办
1.检查电脑是否存在病毒,请使用网络卫士进行木马查杀。
2.系统文件损坏或丢失,盗版系统或Ghost版本系统,很容易出现该问题。建议:使用完整版或正版系统。
3.安装的软件与系统或其它软件发生冲突,找到发生冲突的软件,卸载它。如果更新下载补丁不是该软件的错误补丁,也会引起软件异常,解决办法:卸载该软件,重新下载重新安装试试。顺便检查开机启动项,把没必要启动的启动项禁止开机启动。
4.如果检查上面的都没问题,可以试试下面的方法。
打开开始菜单→运行→输入cmd→回车,在命令提示符下输入下面命令 for %1 in (%windir%\system32\*.dll) do regsvr32.exe /s %1回车。
完成后,在输入下面
for %i in (%windir%\system32\*.ocx) do regsvr32.exe /s %i 回车。
如果怕输入错误,可以复制这两条指令,然后在命令提示符后击鼠标右键,打“粘贴”,回车,耐心等待,直到屏幕滚动停止为止。(重启电脑)。
㈥ 钢铁是怎样炼成的科学解释,请勿和文学挂钩
1、按冶炼方法分类:
平炉钢:包括碳素钢和低合金钢。按炉衬材料不同又分酸性和碱性平炉钢两种。
转炉钢:包括碳素钢和低合金钢。按吹氧位置不同又分底吹、侧吹和氧气顶吹转炉钢三种。
电炉钢:主要是合金钢。按电炉种类不同又分电弧炉钢、感应电炉钢、真空感应电炉钢和电渣炉钢四种。
沸腾钢、镇静钢和半镇静钢:按脱氧程度和浇注制度不同区分。
2、按化学成分分类:
碳素钢:是铁和碳的合金。据中除铁和碳之外,含有硅、锰、磷和硫等元素。按含碳量不同可分 为低碳(C<0.25%)、中碳(C:0.25%-0.60%)和高碳(C>0.60%)钢三类。碳含量小于0.04%的钢称工业纯铁。
普通低合金钢:在低碳普碳钢的基础上加入少量合金元素(如硅、钙、钛、铌、硼和稀土元素等,其总量不超过3%)。而获得较好综合性能的钢种。
合金钢:是含有一种或多种 适量合金元素的钢种,具有良好和特殊性能。按合金元素总含量不同可分为低合金(总量<5%)、中合金(合金总量在5%-10%)和高合金(总量>10%)钢三类。
3、按用途分类:
结构钢:按用途不同分建造用钢和机械用钢两类。建造用钢用于建造锅炉、船舶、桥梁、厂房和其他建筑物。机械用钢用于制造机器或机械零件。
工具钢:用于制造各种工具的高碳钢和中碳钢,包括碳素工具钢、合金工具钢和高速工具钢等。
特殊钢:具有特殊的物理和化学性能的特殊用途钢类,包括不锈耐酸钢、耐热钢、电热合金和磁性材料等。
常用冶炼方法
1、转炉炼钢:
一种不需外加热源、主要以液态生铁为原料的炼钢方法。其主要特点是靠转炉内液态生铁的物理热和生铁内各组分,如碳、锰、硅、磷等与送入炉内的氧气进行化学反应所产生的热量作冶炼热源来炼钢。炉料除铁水外,还有造渣料(石灰、石英、萤石等);为了调整温度,还可加入废钢以及少量的冷生铁和矿石等。转炉按炉衬耐火材料性质分为碱性(用镁砂或白云为内衬)和酸性(用硅质材料为内衬);按气体吹入炉内的部分分为底吹顶吹和侧吹;按所采用的气体分为空气转炉和氧气转炉。酸性转炉不能去除生铁中的硫和磷,须用优质生铁,因而应用范围受到限制。碱性转炉适于用高磷生铁炼钢,曾在西欧获得较大发展。空气吹炼的转炉钢,因其含氮量高,且所用的原料有局限性,又不能多配废钢,未在世界范围内得到推广。1952年氧气顶吹转炉问世,现已成为世界上的主要炼钢方法。在氧气顶吹转炉炼钢法的基础上,为吹炼高磷生铁,又出现了喷吹石灰粉的氧气顶吹转炉炼钢法。随氧气底吹的风嘴技术的发展成功,1967年德国和法国分别建成氧气底吹转炉。1971年美国引进此项技术后又发展了底吹氧气喷石灰粉转炉,用于吹炼含磷生铁。1975年法国和卢森堡又开发成功顶底复合吹炼的转炉炼钢法。
2、氧气顶吹转炉炼钢:
用纯氧从转炉顶部吹炼铁水成钢的转炉炼钢方法,或称LD法;在美国通常称BOF法,也称BOP法。它是现代炼钢的主要方法。炉子是一个直立的坩埚状容器,用直立的水冷氧枪从顶部插入炉内供氧。炉身可倾动。炉料通常为铁水、废钢和造渣材料;也可加入少量冷生铁和铁矿石。通过氧枪从熔池上面向下吹入高压的纯氧(含O299.5%以上),氧化去除铁水中的硅、锰、碳和磷等元素,并通过造渣进行脱磷和脱硫。各种元素氧化所产生的热量,加热了熔池的液态金属,使钢水达到现定的化学成分和温度。它主要用于冶炼非合金钢和低合金钢;但通过精炼手段,也可用于冶炼不锈钢等合金钢。
3、氧气底吹转炉炼钢:
通过转炉底部的氧气喷嘴把氧气吹入炉内熔池,使铁水冶炼成钢的转炉炼钢方法。其特点是;炉子的高度与直径比较小;炉底较平并能快速拆卸和更换;用风嘴、分配器系统和炉身上的供氧系统代替氧气顶吹转炉的氧枪系统。由于吹炼平稳、喷溅少、烟尘量少、渣中氧化铁含量低,因此氧气底吹转炉的金属收得率比氧气顶吹转炉的高1%~2%;采用粉状造渣料,由于颗粒细、比表面大,增大了反应界面,因此成渣快,有利于脱硫和脱磷。此法特别适用于吹炼中磷生铁,因此在西欧用得最广。
4、连续炼钢:
不分炉次地将原料(铁水、废钢)从炉子一端不断地加入,将成品(钢水)从炉子的另一端不断地流出的炼钢方法。连续炼钢工艺的设想早在19世纪就已出现。由于这种工艺具有设备小、工艺过程简单而且稳定等潜在优越性,几十年来许多国家都作了各种各样方法的大量试验,其中主要有槽式法、喷雾法和泡沫法三类,但迄今为止都尚未投入工业化生产。
5、混合炼钢:
用一个炉子炼钢、另一个电炉炼还原渣或还原渣与合金,然后在一定的高度下进行冲混的炼钢方法。用此法处理平炉、转炉及电炉所炼钢水,可提高钢的质量。冲混可增加渣、钢间的接触面积,加速化学反应以及脱氧、脱硫,并有吸附和聚合气体及夹杂物的作用,从而提高钢的纯结度和质量。
6、复合吹炼转炉炼钢:
在顶吹和底吹氧气转炉炼钢法的基础上,综合两者的优点并克服两者的缺点而发展起来的新炼钢方法,即在原有顶吹转炉底部吹入不同气体,以改善熔池搅拌。目前,世界上大多数国家用这种炼钢法,并发展了多种类型的复吹转炉炼钢技术,常见的如英国钢公司开发的以空气+N2或Ar2作底吹气体、以N2作冷却气体的熔池搅拌复吹转炉炼钢法——BSC——BAP法,德国克勒克纳——马克斯冶金厂开发的用天然保护底枪、从底部向熔池分别喷入煤和氧的KMS法、日本川崎钢铁公司开发的将占总氧量30%的氧气混合石灰粉一道从炉底吹入熔池的K——BOP法以及新日本钢铁公司开发的将占总氧量10%——20%的氧气从底部吹入,并用丙烷或天然气冷却炉底喷嘴的LD——OB法等。
7、顶吹氧气平炉炼钢:
从50年代中期开始,在平炉生产中采用1~5支水冷氧枪由炉顶插入熔炼室,直接向熔池吹氧的炼钢方法。该法改善了熔池反应的动力学条件,使碳氧反应的热效应由原来的吸热变为放热,并改善了热工条件;生产率大幅度地得到提高。
8、电弧炉炼钢:
利用电弧热效应熔炼金属和其他物料的一种炼钢方法。炼钢用三相交流电弧炉是最常见的直接加热电弧炉。炼钢过程中,由于炉内无可燃气体,可根据工艺要求,形成氧化性或还原性气氛和条件,故可以用于冶炼优质非合金钢和合金钢。按电炉每吨炉容量的大小,可将电弧炉分为普通功率电弧炉、高功率电弧炉和超高功率电弧炉。电弧炉炼钢向高功率、超高功率发展的目的是为了缩短冶炼时间、降低电耗、提高生产率、降低成本。随着高功率和超高功率电炉的出现,电弧炉已成为熔化器,一切精炼工艺都在精炼装置内进行。近十年来直流电弧炉由于电极消耗低、电压波动小和噪音小而得到迅速发展,可用于冶炼优质钢和铁合金。
9、STB法:
原文为Sumitomo Top and Bottom blowing process,由日本住友金属公司开发的顶底复吹转炉炼钢法。该法综合了氧气顶吹转炉炼钢法和氧气底吹转炉炼钢法两者的优点。用于吹炼低碳钢,脱磷效果好且成本下降显著。所用的底吹气体为O2、CO2、N2等。在STB法基础上又开发了从顶部喷吹粉末的STB—P法,进一步改善了高碳钢的脱磷条件,并用于精炼不锈钢。
10、RH法:
又称循环法真空处理。由德国Ruhrstahl/Heraeus二公司共同开发。真空室下方装有两个导管,插入钢水,抽真空后钢水上升至一定高度,再在上升管吹入惰性气体Ar、Ar上升带动钢液进入真空室接受真空处理,随后经另一导管流回钢包。真空室上装有加合金的加料系统。此法已成为大容量钢包(>80t)的钢水主要真空处理方法。
11、RH—OB:
RH吹氧法。是在真空循环脱气(RH)法中加上吹氧操作(Oxygen Blowing)来升温。用于精炼不锈钢,是利用减压下可优先进行脱碳反应;用于精炼普通钢则可减轻转炉负荷。也可采用加铝升温。
12、OBM—S法:
原文为Oxygen Bottom Maxhutte—Scarp,由德国Maxhutte-Klockner厂发明的以天然气或丙烷作底吹氧枪冷却介质的氧气底吹转炉炼钢法。OBM—S是在OBM氧气底吹转炉的炉帽上安装侧吹氧枪,底部氧枪吹煤气、天然气预热废钢,从而达到增加废钢比的目的。
13、NK—CB法:
原文为NKK Combined Blowing System,由日本钢管公司于1973年建立的顶底复吹转炉炼钢法,即在顶吹的同时,从炉底吹入少量气体(Ar,CO2,N2),以加强钢渣的搅拌,并控制钢水中的CO分压。该法采用多孔砖喷嘴,用于炼低碳钢可降低成本;用于炼高碳钢则有利于脱磷。该法应与铁水预处理工艺结合起来
14、MVOD:
在VAD法的设备上增设水冷氧枪,使之在真空下可吹氧脱碳的方法,由于真空下脱碳为放热反应,可省去VAD法的真空加热措施。操作过程与VOD法相同。
15、LF法:
原文为Ladle Furnace,是1971年日本特殊钢公司(大同钢特殊钢公司)开发的钢包炉精炼法。其设备和工艺由氩气搅拌、埋弧加热和合金加料系统组合而成。这种工艺的优点是:能精确地控制钢水化学成分和温度;降低夹杂物含量;合金元素收得率高。LF炉已成为炼钢炉与连铸机之间不可缺少的一种炉外精炼设备。
16、LD炼钢法:
1952年奥钢联林茨(Linz)厂与奥地利阿尔卑斯矿冶公司多纳维茨(Donawitz)厂最早在工业上开发成功的氧气顶吹转炉炼钢法,并以该两厂的第一个字母而命名。该法问世后在全世界范围迅速得到推广。美国称此法为BOF或BOP法,即Basic Oxygen Furnace 或Process 的简称。详见氧气顶吹, 转炉。
17、LD—OTB法:
原文为LD—Oxgyen Top an Bottom Process,由日本神户制钢公司加古川厂开发的顶底复合吹炼转炉炼钢工艺。其特点是使用了专门的底吹单环缝形喷嘴(SA喷嘴),因而底吹气体能控制在很宽的范围内。底部吹入惰性气体。
18、LD—HC法:
原文为LD—Hainaut Saubre CRM,系比利时开发的用于吹炼高磷铁水的顶底复合吹炼转炉炼钢法,即LD+底吹氧,用碳氢化合物保护喷嘴。
19、LD-AC法:
原文为LD - Arbed - Centre National,法国钢铁研究所开发的顶吹氧气喷石灰粉炼钢法,用于吹炼高磷铁水。
20、KS法:
原文Klockner Steelmaking,系采用100%固体料操作的底部喷煤粉氧气转炉炼钢工艺。底吹氧比率为60%~100%。
21、K—ES法:
将底吹气体技术、二次燃烧技术和喷煤粉技术结合起来的电弧炉炼钢法,它是由日本东京炼钢公司和德国Kiokner公司共同开发的技术,可以以煤代电。
22、FINKL—VAD法:
电弧加热钢包脱气法或称真空电弧脱气法。其特点是在真空室的盖上增设有电弧加热装置,并在真空下用氩气搅拌。该法的脱气效果稳定,而且能脱硫、脱碳和加入大量合金。设备主要由真空室、电弧加热系统、合金加料装置、抽真空系统及液压系统组成。
23、DH法:
德国Dortmund Horder联合冶金公司开发的一种真空处理装置。内衬耐火材料的真空室,下部装上有耐火衬的导管插入钢包,真空室或钢包周期性地放下与提升,使一部分钢水进入真空室,处理后返回钢包。上部有加合金料装置和真空加热保温装置。目前已不再建造这种设备。
24、CLU法:
一种不锈钢的精炼方法。其原理与AOD法相同,物点是采用水蒸气代替氩气。该方法是法国Creusot-Loire公司和瑞典Uddeholm公司共同研制成功的,并于1973年正式投入生产。水蒸气与钢液接触后分解为H2和O2;H2使CO分压降低。同时,该分解反应为吸热反应,因而可抑制钢液温度上升。但铬的氧化烧损比AOD法的严重。
25、CAS法:
原文为Composition adjustment by sealed argonbubbling,是在氩气密封下进行合金成分微调的炉外精炼方法。该法由钢包底部吹氩,将渣排开后,下降浸渍罩,继续吹氩,然后加合金微调成分。其优点是可精确控制成分,且合金收得率高。
26、CAS—OB法:
原文为Compositon adjustment by sealed argon bubbling with oxygen blowing,是在CAS设备上增设吹氧枪的炉外精炼方法。降可微调合金成分外,它还可加铝并吹氧升温(化学热法),升温速度为5~13℃/分。这种方法可使钢水温度精确地控制在±3℃,从而有利于配合连铸生产。
27、ASEA-SKF法:
瑞典开发的一种钢包精炼法。它采用低频电磁搅拌,在常压下进行电弧加热,在钢包中造渣精炼,在另一工位真空除气,并设有氧枪,可在减压下吹氧脱碳。为了提高精炼效果,它还可在钢包底部通过多孔砖吹氩搅拌,并能加入合金调整钢液成分。
28、AOD法:
氩氧脱碳法和简称,原文为Argon-Oxygen Decarburisation,是冶炼低碳不锈钢的主要精炼法。1964年由美国碳化物公司研制成功,1968年用于实际生产。其冶金原理是用Ar稀释CO,使其分压降低,达到真空的效果,从而使碳脱到很低的水平。AOD炉体和传动装置与转炉相类似,风眼安放在接近炉底的侧壁上,向炉内吹入的是Ar+O2混合气体,原料为初炼炉熔化的钢水。吹炼过程分为氧化期、还原期、精炼期。它已成为不锈钢的主要生产工艺。
特殊冶金法
包括电渣重熔、真空冶金、等离子冶金、电子束熔炼、区域熔炼等多种炼钢方法的总称。某些高新技术或特殊用途要求特高纯度的钢,若用普通炼钢方法加炉外精炼达不到要求时,则可采用特殊冶金方法炼制。
电渣重熔:将冶炼好的钢铸造或锻压成为电极,通过熔渣电阻热进行二次重熔的精炼工艺,也称ESR。它的热源来自熔渣电阻热,重熔时自耗电极浸入熔渣中,电流通过电离后的熔渣,使熔渣升温达到比被熔自耗电极熔点高得多的温度。插入熔渣中的自耗电极端头熔化后形成熔滴,并靠自重穿越渣池,得到渣洗精炼而后在减少空气污染的情况下进入金属熔池。钢锭与结晶器壁之间形成薄的渣皮,既减缓了径向冷却,也改善了成品钢锭表面质量,借助结晶器底部水冷,凝固成轴向结晶倾向和偏析少的重熔钢锭,改善了热加工塑性。
等离子冶金:以等离子流为热源的冶金过程,即利用等离子枪将电能转变为定向等离子射流中的热能。等离子射流具有电弧稳定、热量高度集中、可达到非常高的温度等特点。有的等离子枪的工作温度高达5000~20000℃。等离子枪可用惰性气体(Ar)、还原性气体(H2)等为介质,以达到不同的冶金目的。等离子炉可用于熔炼高熔点金属和活泼金属以及金属或合金的提纯。等离子体技术也已用于钢铁厂废尘处理和铁合金生产工艺。
喷射冶金:为加速液体金属与物料的物理化学反应,用气体喷射的方法把粉末物料送入液体金属,完成冶金反应的工艺,亦称喷粉冶金。该工艺广泛用于铁水予处理和钢包精炼,以达到脱硫、脱氧、成分微调、使夹杂物变性的目的。此工艺的反应速度快,物料利用率高。
区域熔炼:1952年W.G.Pfann提出的一种利用液固相中杂质元素溶解度不同的特点提炼金属的工艺。其操作原理是:设一个均匀的固态金属棒中有一小段金属被熔化成液体,那么,若这一小段液态区域自左向右缓慢移动,则每移动一次,杂质都会重新分布,其效果就相当于把杂质驱赶到右端。经过多次这样的重复,左端金属便可达到很高的纯度。
真空冶金:在低于0.1MPa至超高真空条件下[133.3×(<760~10-12)Pa]进行的冶金过程,包括金属及合金的提炼、冶炼、重熔、精炼、成形和热处理。目的主要在于:①减少金属受气相的污染;②降低溶解于金属中的气体或易挥发的杂质含量;③促进有气态产物的化学反应;④避免由耐火材料容器带来的污染。以适应高性能金属材料及新型金属材料的需要。随着生产电热材料、电工合金、软磁合金以及高温镍基合金等高性能和新型金属材料的需要,发展了各种真空熔炼方法,主要有真空电阻熔炼、真空感应熔炼、真空电弧重熔、电子束熔炼及电渣重熔等。
真空电弧熔炼:在真空(10-2~10-1Pa)下借助电弧供热重熔金属和合金的工艺,也称VAR法。其过程是:以水冷铜坩埚为正极,被熔自耗电极接在经滑动密封进入炉体的假电极上为负极,输入低压直流电流在电极与坩埚底之间引弧,借助电弧供热重熔金属和合金。伴随自耗电极的熔化,通过控制电极的下降速度,将自耗电极重熔为成分均匀、组织致密、纯净度高和偏析少的重熔钢锭。它不仅用于重熔活性金属和耐热难熔金属,而且也用于重熔使用要求较严格的高温合金和特殊钢。
真空电子束熔炼:在较高真空(133.3×10-4~133.3×10-8Pa)下用电子枪发射电子束,轰击被熔炼物料(作为阳极),使之熔化并滴入水冷铜结晶器凝固成锭的熔炼方法。锭由机械装置连续抽出。此法可以调节能量分布,控制熔化速度。电子束重熔材料的纯净度比其他真空熔炼法的更高。它适于熔炼钨、钼等金属及其合金、高级合金钢、高温合金和超纯金属。
真空电阻熔炼:在真空下以电流通过导体所产生的热为热源的熔炼方法。一般采取间接加热,由电热体把热能传给炉中物料。根据需要,电阻炉内的气氛可以是惰性或保护性的。真空电阻炉可设计成熔炼炉或热处理炉。
真空感应熔炼:在真空下利用感应电热效应熔炼金属和合金的工艺。按炉料和容量选择电源频率。它有高频(>104Hz)和中频(50~104Hz)以及工频(50或60Hz)两类。感应炉又分有芯(闭槽式)和无芯(坩埚式)两大类。前者电热效率高,功率因数高,但要有起熔体,熔炼温度低,适用于单一品种的连续熔炼;后者熔炼温度高,电热效率低,适于特殊钢和镍基合金等的熔炼。真空感应熔炼在高温合金、高强度钢和超高强度钢等生产中得到广泛应用。
炼钢工艺过程
造渣:调整钢、铁生产中熔渣成分、碱度和粘度及其反应能力的操作。目的是通过渣——金属反应炼出具有所要求成分和温度的金属。例如氧气顶吹转炉造渣和吹氧操作是为了生成有足够流动性和碱度的熔渣,以便把硫、磷降到计划钢种的上限以下,并使吹氧时喷溅和溢渣的量减至最小。
出渣:电弧炉炼钢时根据不同冶炼条件和目的在冶炼过程中所采取的放渣或扒渣操作。如用单渣法冶炼时,氧化末期须扒氧化渣;用双渣法造还原渣时,原来的氧化渣必须彻底放出,以防回磷等。
熔池搅拌:向金属熔池供应能量,使金属液和熔渣产生运动,以改善冶金反应的动力学条件。熔池搅拌可藉助于气体、机械、电磁感应等方法来实现。
电炉底吹:通过置于炉底的喷嘴将N2、Ar、CO2、CO、CH4、O2等气体根据工艺要求吹入炉内熔池以达到加速熔化,促进冶金反应过程的目的。采用底吹工艺可缩短冶炼时间,降低电耗,改善脱磷、脱硫操作,提高钢中残锰量,提高金属和合金收得率。并能使钢水成分、温度更均匀,从而改善钢质量,降低成本,提高生产率。
熔化期:炼钢的熔化期主要是对平炉和电炉炼钢而言。电弧炉炼钢从通电开始到炉料全部熔清为止、平炉炼钢从兑完铁水到炉料全部化完为止都称熔化期。熔化期的任务是尽快将炉料熔化及升温,并造好熔化期的炉渣。
氧化期和脱炭期:普通功率电弧炉炼钢的氧化期,通常指炉料溶清、取样分析到扒完氧化渣这一工艺阶段。也有认为是从吹氧或加矿脱碳开始的。氧化期的主要任务是氧化钢液中的碳、磷;去除气体及夹杂物;使钢液均匀加热升温。脱碳是氧化期的一项重要操作工艺。为了保证钢的纯净度,要求脱碳量大于0.2%左右。随着炉外精炼技术的发展,电弧炉的氧化精炼大多移到钢包或精炼炉中进行。
精炼期:炼钢过程通过造渣和其他方法把对钢的质量有害的一些元素和化合物,经化学反应选入气相或排、浮入渣中,使之从钢液中排除的工艺操作期。
还原期:普通功率电弧炉炼钢操作中,通常把氧化末期扒渣完毕到出钢这段时间称为还原期。其主要任务是造还原渣进行扩散、脱氧、脱硫、控制化学成分和调整温度。目前高功率和超功率电弧炉炼钢操作已取消还原期。
炉外精炼:将炼钢炉(转炉、电炉等)中初炼过的钢液移到另一个容器中进行精炼的炼钢过程,也叫二次冶金。炼钢过程因此分为初炼和精炼两步进行。初炼:炉料在氧化性气氛的炉内进行熔化、脱磷、脱碳和主合金化。精炼:将初炼的钢液在真空、惰性气体或还原性气氛的容器中进行脱气、脱氧、脱硫,去除夹杂物和进行成分微调等。将炼钢分两步进行的好处是:可提高钢的质量,缩短冶炼时间,简化工艺过程并降低生产成本。炉外精炼的种类很多,大致可分为常压下炉外精炼和真空下炉外精炼两类。按处理方式的不同,又可分为钢包处理型炉外精炼及钢包精炼型炉外精炼等。
钢液搅拌:炉外精炼过程中对钢液进行的搅拌。它使钢液成分和温度均匀化,并能促进冶金反应。多数冶金反应过程是相界面反应,反应物和生成物的扩散速度是这些反应的限制性环节。钢液在静止状态下,其冶金反应速度很慢,如电炉中静止的钢液脱硫需30~60分钟;而在炉精炼中采取搅拌钢液的办法脱硫只需3~5分钟。钢液在静止状态下,夹杂物靠上浮除去,排除速度较慢;搅拌钢液时,夹杂物的除去速度按指数规律递增,并与搅拌强度、类型和夹杂物的特性、浓度有关。
钢包喂丝:通过喂丝机向钢包内喂入用铁皮包裹的脱氧、脱硫及微调成分的粉剂,如Ca-Si粉、或直接喂入铝线、碳线等对钢水进行深脱硫、钙处理以及微调钢中碳和铝等成分的方法。它还具有清洁钢水、改善非金属夹杂物形态的功能。
钢包处理:钢包处理型炉外精炼的简称。其特点是精炼时间短(约10~30分钟),精炼任务单一,没有补偿钢水温度降低的加热装置,工艺操作简单,设备投资少。它有钢水脱气、脱硫、成分控制和改变夹杂物形态等装置。如真空循环脱气法(RH、DH),钢包真空吹氩法(Gazid),钢包喷粉处理法(IJ、TN、SL)等均属此类。
钢包精炼:钢包精炼型炉外精炼的简称。其特点是比钢包处理的精炼时间长(约60~180分钟),具有多种精炼功能,有补偿钢水温度降低的加热装置,适于各类高合金钢和特殊性能钢种(如超纯钢种)的精炼。真空吹氧脱碳法(VOD)、真空电弧加热脱气法(VAD)、钢包精炼法(ASEA-SKF)、封闭式吹氩成分微调法(CAS)等,均属此类;与此类似的还有氩氧脱碳法(AOD)。
惰性气体处理:向钢液中吹入惰性气体,这种气体本身不参与冶金反应,但从钢水中上升的每个小气泡都相当于一个“小真空室”(气泡中H2、N2、CO的分压接近于零),具有“气洗”作用。炉外精炼法生产不锈钢的原理,就是应用不同的CO分压下碳铬和温度之间的平衡关系。用惰性气体加氧进行精炼脱碳,可以降低碳氧反应中CO分压,在较低温度的条件下,碳含量降低而铬不被氧化。
预合金化:向钢液加入一种或几种合金元素,使其达到成品钢成分规格要求的操作过程称为合金化。多数情况下脱氧和合金化是同时进行的,加入钢中的脱氧剂一部分消耗于钢的脱氧,转化为脱氧产物排出;另一部则为钢水所吸收,起合金化作用。在脱氧操作未全部完成前,与脱氧剂同时加入的合金被钢水吸收所起到的合金化作用称为预合金化。
成分控制:保证成品钢成分全部符合标准要求的操作。成分控制贯穿于从配料到出钢的各个环节,但重点是合金化时对合金元素成分的控制。对优质钢往往要求把成分精确地控制在一个狭窄的范围内;一般在不影响钢性能的前提下,按中、下限控制。
增硅:吹炼终点时,钢液中含硅量极低。为达到各钢号对硅含量的要求,必须以合金料形式加入一定量的硅。它除了用作脱氧剂消耗部分外,还使钢液中的硅增加。增硅量要经过准确计算,不可超过吹炼钢种所允许的范围。
终点控制:氧气转炉炼钢吹炼终点(吹氧结束)时使金属的化学成分和温度同时达到计划钢种出钢要求而进行的控制。终点控制有增碳法和拉碳法两种方法。
出钢:钢液的温度和成分达到所炼钢种的规定要求时将钢水放出的操作。出钢时要注意防止熔渣流入钢包。用于调整钢水温度、成分和脱氧用的添加剂在出钢过程中加入钢包或出钢流中。
㈦ 钨钢刀具的牌号
1.钨钢不是钢,钨钢是通常的俗称,应该叫硬质合金。是以碳化钨细颗粒粉末为主,以钴为粘结剂的一种合金材料。其他添加材料有钛、钽、铌的碳化物,氮化物。
2.硬质合金ISO分成六类:P钢件,K铸铁件,M不锈钢类,N非铁金属类,S难加工材料类,N硬材料。
3.各类材料各自按硬度不同分成2~4个分类,如:P10、P15、P20...,K01、K10、K15...等。
4.现更多地采用表面涂层的硬质合金刀具,涂层材料有氮化钛、三氧化二铝、铝氮化钛等。
5.各硬质合金刀具材料制造厂家,具体型号的编码方式是不一样的。但都会给出一张对照表,告诉你,他的某个刀具材料对应于ISO是什么牌号。
㈧ 15年的住友81C 熔纤机版本需要升级吗
现在是需要进行版本升级的。
㈨ 请大家帮忙,我要写论文关于冷轧板型控制技术!如果有知道的网页或图书,麻烦给我写下!谢谢
《科技传播》给您推荐
世界冷轧板带板形控制先进技术的进展2009-09-15 16:11 板形控制是冷轧板带加工的核心控制技术之一,近年来随着科学技术的不断进步,先进的板形控制技术不断涌现,并日臻完善, 板形控制技术的发展,促进了冷轧板带工业的装备进步和产业升级,生产效率和效益大幅提升。
板形的概念 (Concept of Shape)
1 板形的基本概念
板形直观来说是指板带材的翘曲度,其实质是板带材内部残余应力的分布。只要板带材内部存在残余应力,即为板形不良。如残余应力不足以引起板带翘曲,称为“潜在” 的板形不良;如残余应力引起板带失稳,产生翘曲,则称为“表观”的板形不良。
2 板形的表示方法
板形的表示方法有相对长度差表示法、波形表示法、张力差表示法和厚度相对变化量表示法等多种方式。其中前两种方法在生产控制过程中较为常用。
3 常见的板形缺陷及分析
常见的板形缺陷有边部波浪、中间波浪、单边波浪、二肋波浪和复合波浪等多种形式,主要是由于轧制过程中带材各部分延伸不均,产生了内部的应力所引起的。
为了得到高质量的轧制带材,必须随时调整轧辊的辊缝去适合来料的板凸度,并补偿各种因素对辊缝的影响。对于不同宽度、厚度、合金的带材只有一种最佳的凸度,轧辊才能产生理想的目标板形。因此,板形控制的实质就是对承载辊缝的控制,与厚度控制只需控制辊缝中点处的开口精度不同,板形控制必须对轧件宽度跨距内的全辊缝形状进行控制。
影响板形的主要因素 (Leading factor on Shape control)
众所周知,影响板形的主要因素有以下几个方面∶
(1) 轧制力的变化;
(2) 来料板凸度的变化;
(3) 原始轧辊的凸度;
(4) 板宽度;
(5) 张力;
(6) 轧辊接触状态;
(7) 轧辊热凸度的变化。
板形控制先进技术 (Advanced Technologies of Shape Control)
改善和提高板形控制水平,需要从两个方面入手,一是从设备配置方面,如采用先进的板形控制手段,增加轧机刚度等;二是从工艺配置方面,包括轧辊原始凸度的给定、变形量与道次分配等。
常规的板形控制手段主要有弯辊控制技术、倾辊控制技术和分段冷却控制技术等。近年来,一些特殊的控制技术,如抽辊技术(HC轧机和UC系列轧机)、涨辊技术(VC轧机和IC轧机) 、轧制力分布控制技术(DSR动态板形辊)和轧辊边部热喷淋技术等先进的板形控制技术,得到日益广泛的应用。在此,分别就其中几种典型技术作以简单介绍。
1 抽辊技术---HC轧机轧辊横移板形控制系统
HC轧机是20世纪70年代日本日立公司和新日铁钢铁公司联合研制的新式6辊轧机。HC(High Crown)即高性能轧辊凸度。该轧机是在普通4辊轧机的基础上,在支撑辊和工作辊之间安装一对可轴向移动的中间辊,中间辊的轴向移动方向相反。
通过对普通4辊轧机轧辊挠曲的分析,工作辊与支撑辊之间超出轧件宽度区域的有害接触区,导致了轧辊的过度挠曲。这种挠曲不仅取决于轧制力的大小,而且取决于轧件宽度。另一方面,在工作辊上施加弯辊力时,轧辊的挠曲会在超出轧件宽度部分受到支撑辊的约束。HC轧机是通过中间辊的横移,消除了支撑辊与工作辊之间的有害接触区,提高了轧制的板形控制能力,可适用于任何宽度带材的轧制。HC轧机目前已发展出多种形式,如中间辊传动的HCM 6辊轧机;中间辊和工作辊均能窜动的HCMW 6辊轧机;中间辊带辊型曲线的HC--CVC轧机;及HCW、UCM、UVMW、MB、UC2~UC4等多种改进型轧机。
HC轧机的优点∶
* 板形控制能力强,不需要太大的弯辊力即可较好的调整板形;
* 可消除支撑辊与工作辊边部的有害接触部分,减轻边部减簿和裂变倾向;
* 由于工作辊径较小(比普通4辊轧机小30%左右) ,可加大压下量,实现大压下量轧制,并减少能耗;
* 采用标准无凸度辊,就能满足各种宽度带材的轧制,减少了轧辊的备件。
* 从20世纪70年代以来,世界各国已建HC轧机200多架,直到至今仍是一种较流行的机种。
2 曲面辊技术
* CVC辊板形控制
CVC辊板形控制技术是德国西马克-德马格公司于1980年开发的。CVC(Coutinuously Variable Crown)的原意是连续可变凸度。经过20多年的发展与完善,CVC轧机已发展出很多种机型,广泛应用于冷轧板带生产中。先进的控制策略和控制手段相结合,使CVC技术成为目前世界上最先进的轧制技术之一。它的控制原理很简单,就是将上、下轧辊辊身磨削成相同的S形CVC曲线,上、下辊的位置倒置180度,当曲线的初始相位为零时,形成等距的S形平行辊缝,通过轧辊窜动机构,使上、下CVC轧辊相对同步窜动,就可在辊缝处产生连续变化的正、负凸度轮廓,从而适应工艺对轧辊在不同条件下,能迅速、连续、任意改变辊缝凸度的要求。
* UPC辊板形控制
UPC轧机是德国MDS研制的万能板形控制轧机,是继HC、CVC技术之后又一种可改善板形的轧辊横移式轧机。其原理是将普通4辊轧机的工作辊磨成雪茄型,大、小头相反布置,构成一个不同凸度的辊缝。
UPC轧机投产的数量不及HC轧机和CVC轧机,最早使用UPC技术的是德国克虏伯1250轧机和芬兰2000轧机。
3 交叉辊技术---PC轧机轧辊交叉板形控制
PC(Pair Cross)的原意是轧辊成对交叉,即轧机轧辊交叉板形控制技术。轧辊交叉系统的设计原理与采用带凸度的工作辊相同。通过调整轧辊的交叉角,使得距轧辊中心越远的地方辊缝越大,实现对辊缝形貌的控制。
轧辊交叉等效凸度与轧辊交叉角、轧辊直径和轧件宽度有关,其关系式如下∶
Cr=Se-Sc=(br)^2/(2Dw)
式中∶ Cr ----等效凸度;
b----轧件宽度;
Se----中心辊缝;
r----轧辊偏转角;
Dw----轧辊直径;
Sc----边部辊缝。
常用的轧辊交叉系统有∶
* 只有支撑辊交叉的支撑辊交叉系统;
* 只有工作辊交叉的工作辊交叉系统;
* 每组工作辊与支撑辊的轴线平行,而上、下辊系交叉的对辊交叉系统。
4 涨辊技术—VC板形可变凸度支撑辊板形控制技术
VC (Variable Crown)原意为在线可变凸度支撑辊,是由日本住友金属公司于1977年开发成功的,轧机的轧辊为辊套型轧辊,主要由芯轴、辊套、密封油腔、油路、旋转连接器和高压泵站等部分组成。
VC辊控制板形的原理较简单,辊套和芯轴之间设有密封油腔,通过改变油腔内的压力,即使支撑辊改变辊形(轧辊凸度)油腔压力与直径胀大在一定范围内呈线性关系,且可做无级调节,因此,可以参与到闭环板形控制系统中。
VC具有较多优点∶
* 减少支撑辊的换辊次数,避免贮存多个不同辊型的轧辊;
* 可补偿轧辊磨损及热辊形;
* 在带材轧制加、减速阶段,可有效补偿因轧制速度的变化引起的轧制力波动和轧辊凸度变化;
* 在线改造方便,仅需用VC辊代替原有支撑辊即可。
但VC也有局限性∶
*VC辊制造较困难;
*高压旋转接头及油腔密封维护难;
*调整轧辊凸度的幅度较小。
5 轧制力分布控制技术—DSR动态板形辊高精度板形控制
DSR动态板形辊高精度板形控制(即轧制力分布控制) 技术 ,是由法国VAI Clecim公司于20世纪90年代推出的,主要由静止辊芯、旋转辊套、7个柱塞式液压缸、推力垫及电液伺服阀等部分组成。
DSR动态板形辊多用于四辊轧机的支撑辊,可成对使用,也可单独使用。其工作原理∶根据板形仪测量计算出的实际曲线与目标板形曲线比较,得到一组偏差,通过7个单独调控的液压压下缸,沿整个带宽经旋转辊套给板带分布相应的轧制力,来进行高精度的板形(平直度) 控制。
DSR动态板形辊高精度板形控制具有突出的优点,是高精度板形控制执行器的一次历史性飞跃。主要表现在∶
*能消除对称性和非对称性的板形缺陷;
*板形控制不影响厚度控制;
*能动态高精度控制板形。
充分发挥DSR方式高精度板形控制能力的关键,在于板形仪系统的测量精度、计算精度以及偏差转换为伺服阀调控信号的精度。一般板形仪应达到1I单位的测量精度。
DSR虽有突出的优点,但其结构相对复杂,检修和维护难度大,且价格昂贵,因此目前尚未大范围普及。
在中国,DSR技术率先在上海宝钢2030冷轧机上得到应用,中国铝业河南分公司郑州冷轧厂正在建设的四辊2300冷轧机也引进了该技术,该项目预计2008年年底正式投产。
目前,在世界上还流行一种称为轧辊热喷淋板形控制先进技术,它具有投产小、改造周期短的特点,比较适合已建设备的在线改造。这项轧辊热喷淋板形控制先进技术是由澳大利亚工业自动化服务公司开发的,该系统是由计算机控制软件和边部热喷淋系统组成。在轧辊两侧安装有两个热喷淋装置,每个装置上安装有数个喷嘴,每个喷嘴的控制范围为25毫米,在轧机工作时实施喷淋加热。该系统有效地解决了高速轧制时,因轧辊热凸度引起的边部张紧的板形缺陷,提高了轧制速度,减少了断带几率。
结语
板形控制是一项综合技术,生产中必须通过先进的控制手段与工艺参数的合理匹配,才能获得理想的板形。